THE PROSPECTS OF ELIMINATING MALARIA FROM SUB-SAHARAN AFRICA

Ousmane KOITA, PharmD, PhD University of Science, Techniques and Technologies of Bamako. Port Harcourt, April 8, 2024

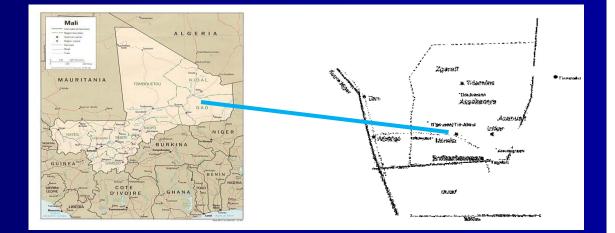
Productive Mentorship 1992-2020

Prof. Donald J. Krogstad

Prof. Ousmane A. Koita

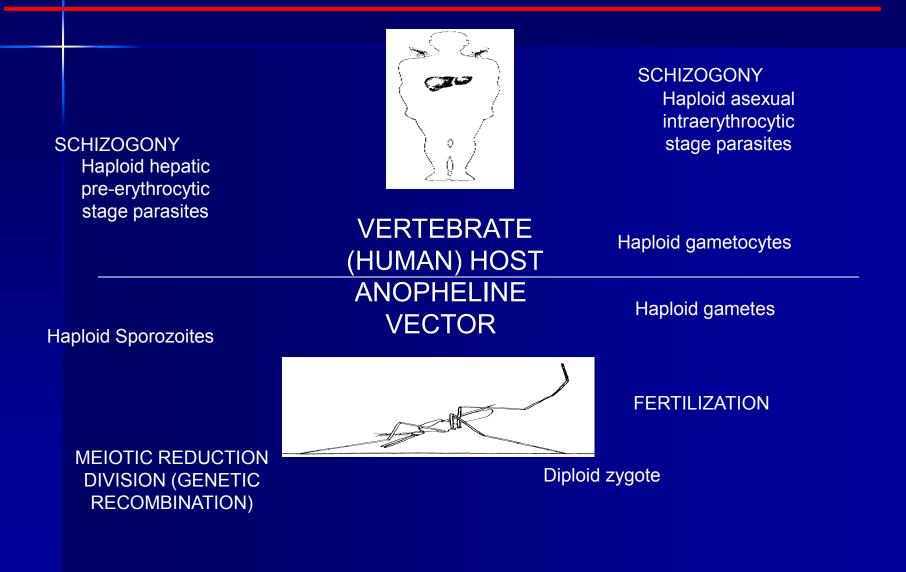
University of Port Harcourt

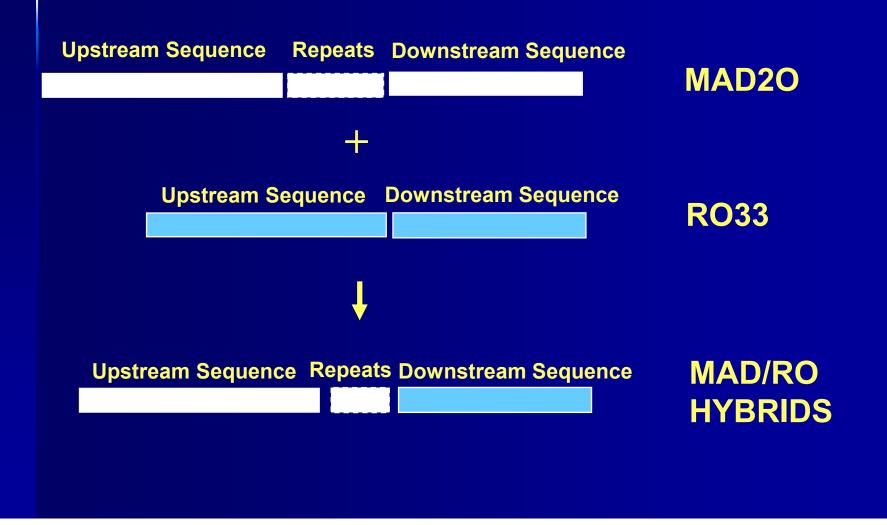
Thanks Prof Aline Noutcha and DVC R&D Prof S. IYEOPU


Focus of this presentation

1. Genetic recombination and Gene Deletion in Malaria parasite

2. Challenges related to Malaria Elimination

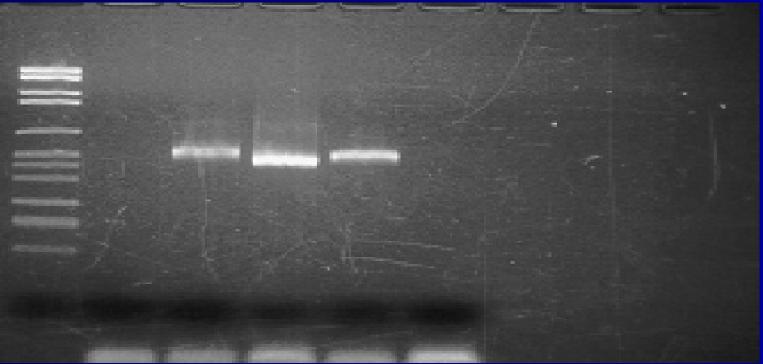

Northwest of Mali



Four species of malaria parasites circulate in Mali: *P. falcparum, P. malariae, P. ovale* and *P. vivax,* Mali Is one of West African countries where the 4 species are present.

SCHEMATIC LIFE CYCLE DIAGRAM FOR THE MALARIA PARASITE

RECOMBINANT (HYBRID) BLOCK 2 MSP-1 SEQUENCES


PCR OF BLOCKS 1-3 USING CONSERVED PRIMERS

ACTAGAAGCTTTAGAAGATGCAGTA

TTCGTGCAAATGAATTAGACGTA

AMPLIFICATION OF HYBRID BLOCK 2 SEQUENCE USING CONSERVED PRIMERS

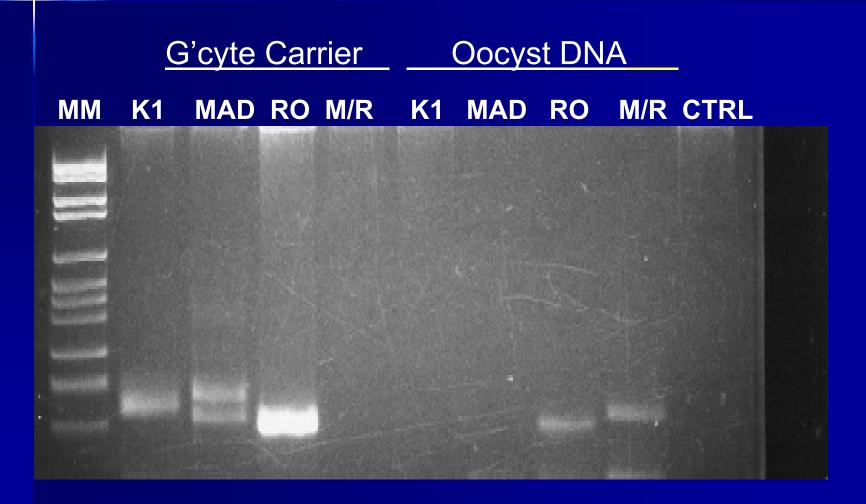
MM Human Indo 7G8 Hybrid Neg Ctrl (M) (R) (M/R)

CLONING STRATEGY FOR SEQUENCING

Slight modification of the original PCR conditions (additional template extension at 72°C for 10 minutes) permits one to add two adenines (independent of coding) at both ends of the amplified product (using *Taq polymerase*). The PCR product obtained is then suitable for cloning into the TA TOPO vector from Invitrogen which has matching overhanging thymidines at both ends.

UPSTREAM SEQUENCE OF BLOCK 2 IN MSP-1

GTATTAAATGAAGGAACAAGTGGAACAGCTGTTACAACTAGTACA	4
GTATTAAATGAAGGAACAAGTGGAACAGCTGTTACAACTAGTACA	4
GTATTA AATGAAGGAACAAGTGGAACAGCTGTTACAACTAGTACA	4
GTATTAAATGAAGGAACAAGTGGAACAGCTGTTACAACTAGTACA	4
GTATTA AATGAAGGAACAAGTGGAACAGCTGTTACAACTAGTACA	4
GTATTA AATGAAGGAACAAGTGGAACAGCTGTTACAACTAGTACA	4
CCTGGTTCA <u>GGT</u> GGTTCAGTTACTTCAGGTGGTTCAGGTGGTTCA	9
CCTGGTTCAAAGGGTTCAGTTGCTTCAGGTGGTTCAGGTGGCTCA	9
CCTGGTTCAAAGGGTTCAGTTGCTTCAGGTGGTTCAGGTGGCTCA	9
CCTGGTTCAAAGGGTTCAGTTACTTCAGGTGGTTCAGGTGGTTCA	9
CCTGGTTCAAAGGGTTCAGTTACTTCAGGTGGTTCAGGTGGTTCA	9
CCTGGTTCAAAGGGTTCAGTTACTTCAGGTGGTTCAGGTGGTTCA	9
GTTGCTTCAGTTGCTTCAGGTGGTTCAGGTGGCTCAGTTGCTTCA	1
GTTGCTTCAGGTGGCTCAGTTGCTTCAGGTGGTTCAGGTAATTCA	1
GTTGCTTCAGGTGGTTCAGGTGGCTCAGTTGCTTCAGGTGGCTCA	1
GGTGGTTCAGGTGGTTCA	1
GGTGGTTCA	
	GTATTA AATGAAGGAACA AGTGGAACAGCTGTTACAACTAGTACA GTATTA AATGAAGGAACAAGTGGAACAGCTGTTACAACTAGTACA GTATTA AATGAAGGAACAAGTGGAACAGCTGTTACAACTAGTACA GTATTA AATGAAGGAACAAGTGGAACAGCTGTTACAACTAGTACA GTATTA AATGAAGGAACAAGTGGAACAGCTGTTACAACTAGTACA CCTGGTTCAGGTGGTTCAGGTAGGAACAGCTGTTACAACTAGTACA CCTGGTTCAAAGGGTTCAGTTACTTCAGGTGGTTCAGGTGGCTCA CCTGGTTCAAAGGGTTCAGTTGCTTCAGGTGGTTCAGGTGGCTCA CCTGGTTCAAAGGGTTCAGTTGCTTCAGGTGGTTCAGGTGGCTCA CCTGGTTCAAAGGGTTCAGTTACTTCAGGTGGTTCAGGTGGCTCA CCTGGTTCAAAGGGTTCAGTTACTTCAGGTGGTTCAGGTGGTTCA CCTGGTTCAAAGGGTTCAGTTACTTCAGGTGGTTCAGGTGGTTCA CCTGGTTCAAAGGGTTCAGTTACTTCAGGTGGTTCAGGTGGTTCA CCTGGTTCAAAGGGTTCAGGTTGCTTCAGGTGGTTCAGGTGGTTCA GTTGCTTCAGGTGGCTCAGTTGCTTCAGGTGGTTCAGGTGGTTCA GTTGCTTCAGGTGGCTCAGGTGGCTCAGGTGGTTCAGGTGGCTCA GTTGCTTCAGGTGGCTCAGGTGGCTCAGGTGGCTCAGGTGGCTCA GTTGCTTCAGGTGGCTCAGGTGGCTCAGGTGGCTCAGGTGGCTCA GTTGCTTCAGGTGGCTCAGGTGGCTCAGGTGGCTCAGGTGGCTCA


DOWNSTREAM SEQUENCE OF BLOCK 2 IN MSP-1

BANCHYB	TCA GGTGCTACAGTACCTTCAGGTACTGCAAGTACTAAAGGTGCT	42
GABHYB	TCA GGTGCTACAGTACCTTCAGGTACTGCAAGTACTAAAGGTGCT	42
SELINHYB	TCA GGTGCTACAGTACCTTCAGGTACTGCAAGTACTAAAGGTGCT	42
RO33B5T10	TCA GGTGCTACAGTACCTTCAGGTACTGCAAGTACTAAAGGTGCT	42
RO33B5T8	TCA GGTGCTACAGTACCTTCAGGTACTGCAAGTACTAAAGGTGCT	42
RO33GAB	TCA GGTGCTACAGTACCTTCAGGTACTGCAAGTACTAAAGGTGCT	42
RO33GHANA	TCA GGTGCTACAGTACCTTCAGGTACTGCAAGTACTAAAGGTGCT	42
RO33SNGAL	TCA GGTGCTACAGTACCTTCAGGTACTGCAAGTACTAAAGGTGCT	42
RO3B36T6	TCA GGTGCTACAGTACCTTCAGGTACTGCAAGTACTAAAGGTGCT	42
BANCHYB	ATAAGA <u>TCTCCAGGTGCTGCAAATCCTT</u>	70
GABHYB	ATAAGA <u>TCTCCAGGTGCTGCAAATCCTT</u>	70
SELINHYB	ATAAGA <u>TCTCCAGGTGCTGCAAATCCTT</u>	70
RO33B5T10	ATAAGA <u>TCTCCAGGTGCTGCAAATCCTT</u>	70
RO33B5T8	ATAAGA <u>TCTCCAGGTGCTGCAAATCCTT</u>	70
RO33GAB	ATAAGA <u>TCTCCAGGTGCTGCAAATCCTT</u>	70
RO33GHANA	ATAAGA <u>TCTCCAGGTGCTGCAAATCCTT</u>	70
RO33SNGAL	ATAAGA <u>TCTCCAGGTGCTGCAAATCCTT</u>	70
RO3B36T6	ATAAGA <u>TCTCCAGGTGCTGCAAATCCTT</u>	70

DETECTION OF CROSS- OVERS DURING MEIOSIS

- Screening for gametocyte carriers (children from 4 to 18 years of age),
- Transportation of subjects from Bancoumana to Bamako for the feeding experiment,
- Exposure to 50-60 F1 An. gambiae mosquitoes one generation removed from Bancoumana,
- Fed mosquitoes held 7-8 days and are then dissected for oocysts.

HYBRID SEQUENCES IN MOSQUITO OOCYSTS

RECOMBINATION IN THE ANOPHELINE MOSQUITO

MAD20	GTATTAAATGAAGGAACAAGTGGAACAGCTGTTACA	36
Hybrid	GTATTAAATGAAGGAACAAGTGGAACAGCTGTTACA	36
MAD20	ACTAGTACACCTGGTTCAAAGGGTTCAGTTACTTCA	72
Hybrid	ACTAGTACACCTGGTTCAAAGGGTTCAGTTACTTCA	72
MAD20	GGTGGTTCAGGTGGTTCAGGTGGTTCA	99
Hybrid	GGTGGTTCAGGTGGTTCAGGTGGTTCAGGTGCTACA	108
RO33	CAGGTGCTACA	11
Hybrid	GTACCTTCAGGTACTGCAAGTACTAAAGGTGCTATA	144
RO33	GTACCTTCAGGTACTGCAAGTACTAAAGGTGCTATA	47
Hybrid	AGATCTCCAGGTGCTGCAAATCCTTCAGA	173
RO33	AGATCTCCAGGTGCTGCAAATCCTTCAGA	76
R (055		10

HYBRID BLOCK 2 SEQUENCES: SIZE POLYMORPHISMS

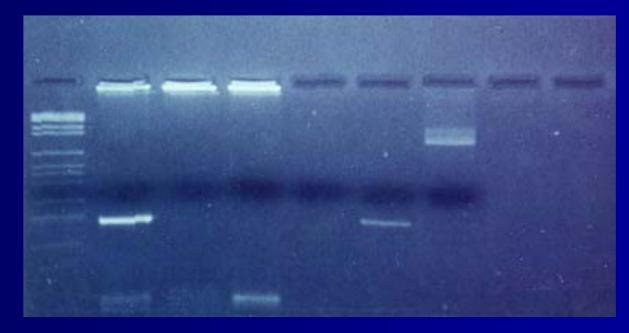
ISOLATES	SIZES (bp)
Sélingué 5	164
Gabriel Touré	173
Sélingué 7	173
GamBancou 2134	173
Bancou45 oocyst	173
Bancou34T4	182

RDTs and *hrp2* Gene Deletions

- Twenty-six (26) of 480 smearpositive specimens had falsenegative RDTs using an HRP2based RDT.
- PCR amplification for the histidine-rich repeat region of *hrp2* was negative in half (10/22) of the false-negatives, consistent with spontaneous deletion of *hrp2* or its central region.

Am. J. Trop. Med. Hyg., 86(2), 2012, pp. 194–198 doi:10.4269/ajruh.2012.10-0665 Copyright © 2012 by The American Society of Tropical Medicine and Hygiene

> False-Negative Rapid Diagnostic Tests for Malaria and Deletion of the Histidine-Rich Repeat Region of the *hrp2* Gene⁺


Ousmane A. Koita, Ogobara K. Doumbo, Amed Ouattara, Lalla K. Tall, Aoua Konaré, Mahamadou Diakité, Mouctar Diallo, Issaka Sagara, Godfred L. Masinde, Safiatou N. Doumbo, Amagana Dolo, Anatole Tounkara, Issa Traoré, and Donald J. Krogstad*

HRP-2 GENE DELETION IN MALARIA PARASITE

Expected size of the 923 bp PCR product


hrp2 PCR in Subjects with and without *hrp2* Deletions

Lane 1: DNA molecular weight markers VI (Roche, Indianapolis, IN).

Lanes 2-6: results of PCR with DNA from a thick smear-positive subject with a negative ParaSight F test using allotype-specific primers for the Block 2 region of *msp1* (Lanes 2-4 demonstrate one K1 amplicon and no MAD20 or RO33 amplicons), forward and reverse primers for *hrp2* (Lane 5 demonstrates the absence of *hrp2* amplicons) and species-specific primers for *P. falciparum* ribosomal DNA (Lane 6, amplicon of the expected size, ~206 bp). In contrast, Lane 7 provides a positive control for the *hrp2* PCR based on DNA from a thick smear-positive subject with a positive ParaSight F test (same forward and reverse primers).

DIORO Mali ICEMR Site

Population : 11,395 inhabitants Prevalence of Malaria infection: ~70%

EIR: 4.77 infectious bites per month

Control measures:

1] Prompt free treatment of uncomplicated P. falciparum malaria with ACTs,

2] Universal coverage with longlasting insecticidal nets (LLINs), 3] Free care for malaria since 2006 (MDGs, MVP, Ségou).

Study Site : DIORO

The Dioro irrigation scheme is based on manual opening gravity-fed wooden flood gates on the Niger River behind the Markala Dam.

•The primary flood gates are opened between August 17th and 30th each year and flood 7,500 ha for rice cultivation from September to December.

•In December, the water in this initially flooded area is drained (to permit harvesting of the first rice crop) into a second area to permit a second rice crop between December and April or May from the flooding of an additional 7,500 ha (by opening a second series of wooden flood gates).

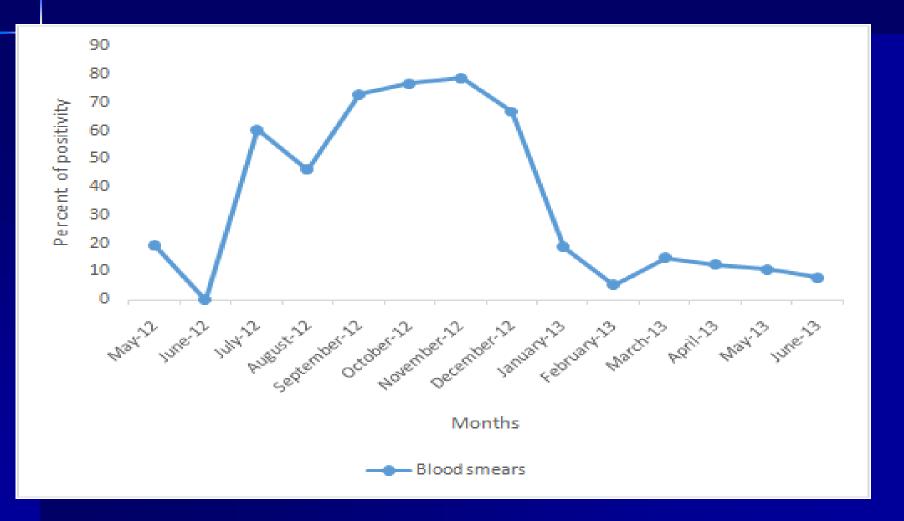
• The result is that there is an enormous flooded area of stagnant water in the Commune of Dioro for mosquito breeding from August to April or May each year (\geq 7,500 hectares).

Methods

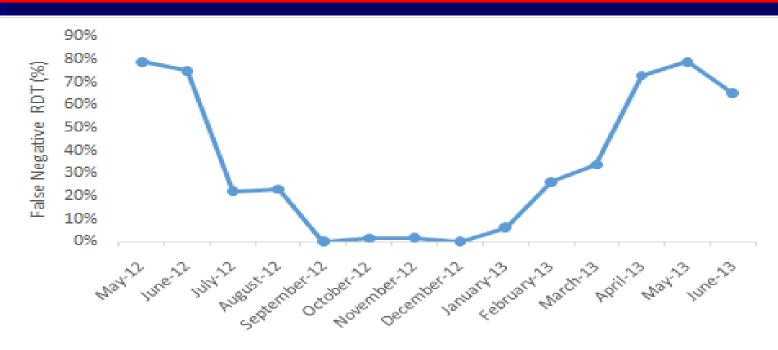
- Sample: all subjects with fever seeking care at the Dioro Clinic from May 2012 to June 2013,
- Consent was obtained for fingerprick blood samples for thick smears, RDTs and filter paper blots. Assent obtained for subjects less 18 years of age.
- Thick smears, RDTs (Paracheck, First Response and Bioline) and filter paper blots were obtained from each subject.

Dioro Health Center

Basic Demographic Data


Age group (years)	Number	Percent (%)
1-4	189	27.4
5-9	262	37.9
10-16	240	34.7
Total	691	100
Gender		
Male	346	50.1
Female	345	49.9
Total	691	100

Rapid Diagnostic Test and Thick Smear


Denid Disgnastis Test	Thick smear		Total	
Rapid Diagnostic Test	Negative	Positive	Total	
Negative	112	277	389	
Positive	15	287	302	
Total	127	564	691	

Parameter	Raw Data	Percent	95% Confidence
Sensitivity	287/309	50.9%	46.7-55.1%
Specificity	112/127	88.2%	81.3-93.2%
Positive Predictive Value	287/302	95.0%	91.9-97.2%
Negative Predictive Value	112/389	28.8%	

Seasonal Changes in Positive Smears

Seasonality of False-Negative RDTs

Months

Malaria Season	YES	NON	TOTAL
LOW	258	190	448
HIGH	19	224	243
TOTAL	277	414	691
P value < 0.0001			

Parasitemia and False negative RDTs 100000-100000 Parasites per ul 10000-1000-100-20 40 60 80 О

Percent False Negative RDTs

Clonality (Multiplicity of Infection) and Frequent False-Negative RDTs

Previous studies have shown that the multiplicity (complexity) of infection is lower in specimens with false-negative RDTs than in specimens with truepositive RDTs:

RDT Test Results and the Number of Parasite Genotypes in Specimens with Thick Smears positive for *P. falciparum*

RDT Result	Mean Number Genotypes
False Negatives	$1.00 \pm 0.00 (n=12)$
True Positives	2.42 ± 0.84 (n=19)

Am J Trop Med Hyg 2012; 86(2): 194-198.

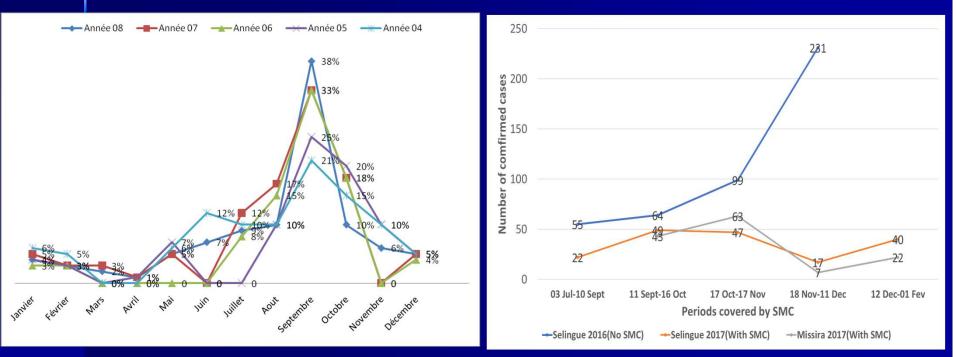
Explaining the Increased Frequency of False-Negative RDTs in the Dry Season

Three or more factors may explain/contribute to seasonal variation in the frequency of false-negative RDTs:

- 1] spontaneous HRP2 deletions,
- 2] lower MOIs during the dry season which potentially also increase false-negative RDTs and
- 3] less frequent acquisition of new infections because of less intense transmission during the dry season.

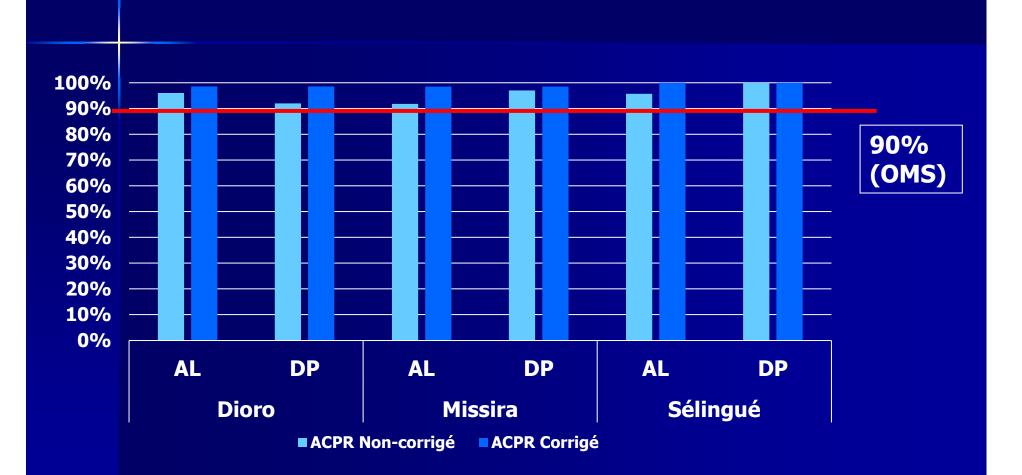
Implications of these results for malaria control

- Regardless of the mechanism(s) involved, falsenegative RDTs pose a challenge for malaria control,
- Improved malaria control paradoxically decreases the sensitivity of the RDT because it reduces both parasite densities and multiplicity of infection.
- As a result, sensitivity of the RDT may progressively worsen as malaria control improves,
- This issue (false-negative RDTs) is a priority for country-specific malaria control programs in endemic areas as well as international groups (PMI, WHO).

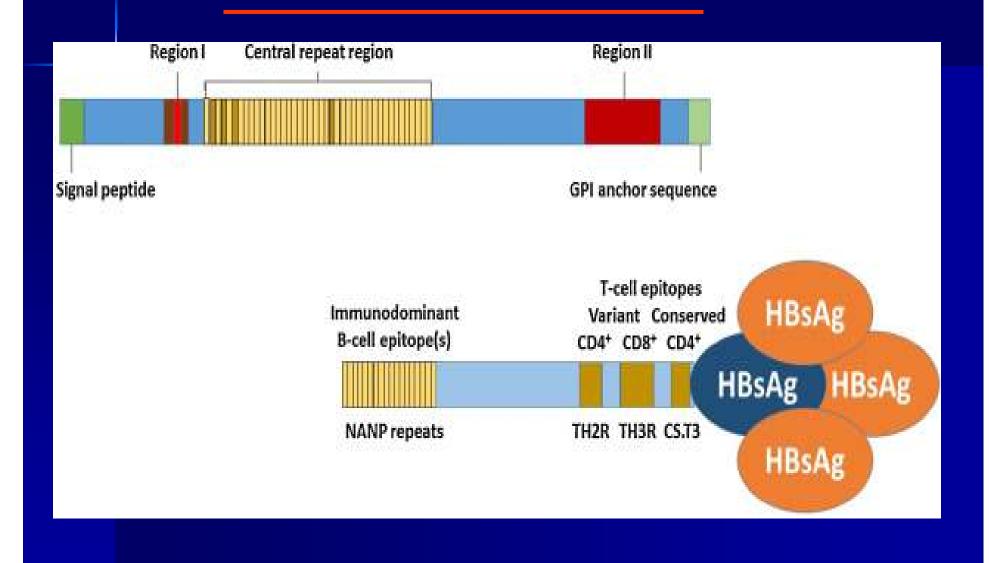

CONCLUSION (1)

This recombinant parasite is produced during the meiotic reduction division in the mosquito, The size polymorphisms observed in these sequences are consistent with crossover events at 9 bp intervals based on repeating TCA trinucleotides in Block 2.

CONCLUSION (2)


Subteleomeric deletion occurs in malaria parasite. The hrp2/3 situated at the end of the chromosome can be deleted and therefore Rapid Diagnostic Test (RDT) may produce false negative, currently treatment by ACT is based on this test. About, 2.5% of *P. falciparum* parasites circulating in Mali lack of hrp2 gene.

IMPACT OF SMC ON MALARIA CASES IN MALI



Mamadou Bah, PhD, thesis, 2013

THERAPEUTIC EFFICACY STUDY (PMI/USAID)

CONCEPTION OF RTS,S/AS01 VACCINE

EFFICACY OF PHASE 3 OF RTS, S/AS01 VACCINE

Age Group	6-12 weeks of age (n = 6537)	5-17 months of age (n = 8922)
Vaccine Efficacy against clinical malaria, 3-dose group (95% CI)	18.3% (11.7 to 24.4)	28.3% (23.3 to 32.9)
Vaccine efficacy against clinical malaria, 4-dose group (95% CI)	25.9% (19.9 to 31.5)	36.3% (31.8 to 40.5)
Vaccine Efficacy against severe malaria, 3-dose group (95% CI)	10.3% (–17.9 to 31.8)	1.1% (-23.0 to 20.5)
Vaccine efficacy against severe malaria, 4-dose group (95% CI)	17.3% (–9.4 to 37.5)	32.2% (13.7 to 46.9)

Scientifique:

Modest efficacy of 30%, in taking into account the gene polymorphisme of candidat vaccine and high plasticity of the parasite genome,

Selection of resistant strains to RTS,S as consequence of massive immunization

CONCLUSION

Financial:

8,68 US\$ per dose when incorpaorated in the Immunization program targetting 3.905.460 children less than 59 months. The financial burden **81.358.542.720 FCFA**

CONCLUSION

Ethics:

A vaccine must be tested on adults first before children;

Society:
More suspicion towards immunization program

NEW APPROACHES IN MALARIA TREATMENT

Household care

NEW APPROACHES IN MALARIA TREATMENT

In the community,

Strengthen the capacity of the health community center Mini blood bank

CHALLENGES

Malaria elimination remains a challenge, such as genetic diversity of the parasite, the financial burden, population mobility and environmental context.

Lack of political commitment: U\$25 millions year 2022⁵.

Research within our universities should look at endogenous solutions

Acknowledgments

Laboratory of Applied Molecular Biology (FAST):

 Lansana Sangare
 Vincent Sanogo
 Chaka Coulibaly
 Youssouf Diarra
 Aliou Sissako

Tulane University, School of Public Health and Tropical Medicine Don Krogstad and Fran Krogstad

University of Port Harcourt

Thanks Prof Aline Noutcha and DVC R&D Prof S. IYEOPU

Life, a Challenge

View of Bamako from my office

